• Полезная информация:

Смета на медицинские газы


Раздел 44 Здравоохранение. Сборник цен на проектные работы для строительства

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

(МИНЗДРАВ СССР)

СБОРНИК
ЦЕН НА ПРОЕКТНЫЕ РАБОТЫ
ДЛЯ СТРОИТЕЛЬСТВА

РАЗДЕЛ 44

ЗДРАВООХРАНЕНИЕ

(С ИЗМЕНЕНИЯМИ И ДОПОЛНЕНИЯМИ)

Утвержден
Министерством здравоохранения ССР
(приказ от 18.03.87 № 383)
по согласованию с Госстроем СССР
(письмо АЧ-757-6/5 от 17.02.87)

МОСКВА 1990

Раздел 44 «Здравоохранение» разработан Государственным проектным и научно-исследовательским институтом по проектированию учреждений здравоохранения (Гипронииздрав) Министерства здравоохранения СССР.

Редактор - инж. М.Б. Ярош

Вводится в действие с 1 апреля 1987 г.

СОДЕРЖАНИЕ

1. Настоящий раздел содержит цены для определения стоимости разработки проектно-сметной документации на новое строительство комплексов и отдельных зданий и сооружений учреждений здравоохранения.

2. Под комплексом медицинского учреждения подразумевается ряд функционально взаимосвязанных зданий и сооружений размещенных на одной территории и имеющих общие коммуникации, единую систему энергоснабжения, водоснабжения и т.п.

В состав комплекса входят: главный корпус больницы (родильного дома), поликлиника (женская консультация), объединенная со стационаром, лечебные, лечебно-диагностические корпуса, а также хозяйственные и вспомогательные здания и сооружения.

В состав комплекса не входят централизованные вспомогательные и производственно-хозяйственные службы (патологоанатомические корпуса, гаражи, склады, мастерские и прочее), а также отдельно стоящие аудитории, конференцзалы, медицинские училища с общежитиями, обслуживающие несколько медицинских учреждений различного профиля.

(Новая редакция, Изм. № 1).

3. Стоимость работ по выбору площадки (трассы) для строительства определяется по ценам на разработку проекта соответствующего объекта с коэффициентом 0,1.

(Новая редакция, Изм. № 1).

4. Общая площадь здания или сооружения определяется как сумма площадей всех этажей (включая технические, мансардный, цокольный, подвальные).

(Новая редакция, Изм. № 1).

5. Стоимость проектирования фельдшерско-акушерских пунктов (ФАП) общей площадью менее 450 м2 определяется по разделу 39 «Жилые и гражданские здания» табл. 39-1 Сборника цен, как жилые одноэтажные дома, с коэффициентом 1,14, учитывающим технологическую часть.

(Введен дополнительно, Изм. № 1).

Таблица 44-1

Комплексы и отдельные здания и сооружения учреждений здравоохранения

files.stroyinf.ru

Медицинское газоснабжение

Компания «ИТАРМЕД» осуществляет полный комплекс работ по поставке и монтажу систем «медицинских газов» (медгазов) для любого типа лечебных учреждений и медицинских центров:

  • Проектирование системы (медицинских газов) медицинского газоснабжения
  • Поставка и монтаж инженерного оборудования системы медицинского газоснабжения.
  • Поставка и монтаж медицинского оборудования системы медицинского газоснабжения.
  • Пусконаладочные работы
  • Сервисное обслуживание систем «медицинских газов»

 


 

 

Под термином «медгазы» мы понимаем комплекс инженерно-технических решений и оборудования, состоящий из источников «медицинских газов», трубопроводов, систем автоматики, диспетчеризации. аварийной сигнализации, систем автоматической подачи и точек потребления «медгазов». На наш взгляд, термин «медгазы» несколько неточно определяет суть вопроса, поэтому мы его разделяем на две составляющие.

Первая – это «система медицинского газоснабжения» как инженерный комплекс, задачей которого является:

а) хранение медицинских газов в лечебном учреждении,

б) доставка медгазов по инженерным сетям к потребителю в лечебном учреждении,

в) утилизация отработанных медгазов.

Вторая – это собственно медицинские газы в сжиженном, или сжатом газообразном виде в баллонах или криогенных сосудах, производством и доставкой которых занимаются специализированные компании и заводы.

В современной медицинской практике используются следующие газы:

  • кислород газообразный медицинский;
  • кислород жидкий медицинский;
  • циклопропан;
  • закись азота;
  • воздух синтетический;
  • воздух сжатый;
  • азот жидкий;
  • азот жидкий ОСЧ;
  • азот газообразный нулевой А;
  • аргон газообразный ОСЧ;
  • аргон газообразный;
  • аргон газообразный ВЧ;
  • ацетилен растворенный А
  • гелий газообразный ВЧ 5.5
  • гелий газообразный ВЧ 6.0
  • гелий газообразный ВЧ 7.0
  • гелий газообразный А
  • гелий газообразный Б
  • гелий жидкий
  • двуокись углерода (углекислота) пищевая
  • двуокись углерода (углекислота) ВЧ
  • ксенон газообразный ВЧ 5.5
  • ксенон
  • криптон газообразный медицинский

Стандартом в любом медицинском учреждении стало использование медицинского кислорода, закиси азота, двуокиси углерода, сжатого воздуха и их смесей. Состав смесей медицинских газов может быть адаптирован к каждой конкретной клинической ситуации, так, например, достаточно часто используются такие смеси газов как кислород + углекислый газ, кислород+гелий или ксенон и т.д. Как бы то ни было, для использования любого медицинского газа необходимо специализированное оборудование, как инженерное, так и медицинское, которые в комплексе можно назвать системой медицинского газоснабжения.

Каждая система медицинского газоснабжения состоит из: источника соответствующего медицинского газа, трубопроводов, транспортирующих медицинский газ, системы регулирования подачи и точек потребления медицинских газов.

Практически все медицинские газы, используемые в медицине, поставляются в лечебные учреждения в газообразном сжатом состоянии. Медицинский кислород поставляется в сжиженном или газообразном состоянии.

Для хранения медицинского кислорода в жидком состоянии в лечебных учреждениях используются криогенные резервуары с испарителем, так называемые газификаторы, с обязательным использованием резервного источника кислорода, баллонной связки – кислородной рампы.

 

рис. 1. Хранилище сжиженного кислорода с резервными емкостями (кислородной рампой) на заднем плане

 Для хранения кислорода в небольших больницах используются кислородные баллоны высокого давления, объединенные в единую систему посредством рампы.

 

рис. 2. Хранилище кислородных баллонов высокого давления подсоединенных к системе распределения (рампе)

Медицинский газ поступает из источника через регулируемый редуктор высокого давления с предохранительным клапаном и показывающими манометрами (до и после редуктора), где входное давление системы снижается до уровня приемлемого для ввода в газораспределительную систему ЛПУ. Газораспределительная система обычно состоит из трубопроводов, выполненных из цельнотянутой медной трубы или нержавеющей стали, по которым медицинский газ поступает к потребителю.

 

Рис.3 Принципиальная схема централизованного медицинского газоснабжения.

Газопроводы системы медицинских газов необходимо проектировать таким образом, чтобы медицинский персонал и пациенты больницы не имели прямого контакта с источниками медицинского газоснабжения. Баллоны и емкости хранения медгазов должны храниться в помещениях, специально для этого оборудованных. Все системы медицинского газоснабжения требуют усиленного внимания к безопасности и должны быть оборудованы системами сигнализации и контрольно-отключающими приборами. При угрозе пожара или взрыва эти системы должны иметь возможность оперативно отключить здание от медицинского газоснабжения.

Необходимо помнить, что в каждом лечебном учреждении система снабжения медицинскими газами в том или ином виде эксклюзивна. Каждое медицинское учреждение имеет свои особенности и соответственно имеет свою, отличную от других систему медгазов. Однако существуют общие принципы построения системы медицинского газоснабжения, которые должны соблюдаться в любом ЛПУ.

Централизованное снабжение медицинским кислородом

Централизованное снабжение закисью азота

Централизованное снабжение сжатым воздухом

Централизованное обеспечение вакуумом

Централизованное снабжение углекислым газом

Централизованное обеспечение азотом и аргоном

Дополнительные материалы

itarmed.org

Монтаж трубопровода для медицинских газов

Монтаж трубопровода для медицинских газов Oxygen Service

системы медицинского
газоснабжения
поставка-монтаж-обслуживание

ОСНОВНЫЕ МОМЕНТЫ ПО МОНТАЖУ ТРУБОПРОВОДА МЕД. ГАЗОВ

  • Трубопроводы медицинских газов внутренней разводки монтируются из медных труб по ГОСТ с применением фитингов (отводов, тройников и т.д.) с помощью припоя. Перед пайкой стыки трубопроводов должны быть зачищены, обезжирены и промыты.
  • Методы крепления трубопроводов разрабатываются монтажной организацией. Перед монтажом монтируемые трубы и арматура должны быть очищены, промыты и обезжирены в соответствии с отраслевым стандартом. Все трубопроводы после монтажа (по участкам) должны быть испытаны пневматически на прочность и герметичность.
  • Перед испытанием трубопроводы продувают воздухом или азотом, не содержащим масла или примесей жира. После окончания испытания трубопроводы просушивают продувкой в течение 8 часов подогретым воздухом или азотом.
  • После проведения паячных и монтажных работ по установке арматуры и оборудования и подключения их к смонтированным трубопроводам проводятся повторные комплексные испытания всей смонтированной системы централизованной подачи медицинских газов с промывкой всей системы спец растовором для удаления остатков окалины, окислов, пыли и обеззараживания внутренних поверхностей системы.
  • После проведения повторных комплексных испытаний для удаления остатков промывочных жидкостей необходимо провести тщательную продувку сухим сжатым воздухом со скоростью не менее 40 м/с, а непосредственно перед пуском в эксплуатацию системы продуть соответствующим газом с выбросом в атмосферу.
  • Для защиты трубопроводов от статического электричества последние должны быть надежно заземлены в соответствии с "Правилами защиты от статического электричества в производствах химической промышленности".

Ниже вы можете ознакомиться с вариантами исполнения нами монтажа трубопроводов в медицинских учреждениях.


Наша компания готова взять на себя обязательства по выполнению работ любой сложности и объема, будь это небольшая частная клиника или больница на 2000 коек. Подробно с нашими работами Вы можете ознакомится на нашем сайте в разделе Портфолио или позвонить по телефону указанному на нашем сайте для получения любой интересующей Вас информации.

Варианты исполнения

Более подробно с нашими работами вы можете ознакомится в нашем портфолио по ссылке ниже

Подробнее

Для просмотра сайта обновите браузер.

oxygen-service.ru

Медицинские газы в лечебных учреждениях

  • Главная
  • Медицинские газы в лечебных учреждениях

Лечебные газы

Кислород для системы жизнеобеспечения.

Монтаж медицинского газового оборудования проводится в строгом соответствии с проектной документацией, требованиями нормативных документов, учитывая особенности и специфику каждого объекта, и технические условия производителя медицинского оборудования. Ремонт и реконструкцию систем снабжения медицинскими газами могут проводить только специализированные организации с опытом работы и соответствующим оборудованием.

Баллонные станции для медицинских газов очень часто применяются в качестве основного источника централизованной подачи медицинских газов. Источники медицинских газов могут быть оснащены специальными системами для мониторинга подачи газа, которые подают специальный звуковой и световой сигнал в случае возникновения неполадок и каких-либо отклонений в работе. Разрядные баллонные станции размещаются в специально оборудованных помещениях, в которые возможен доступ только аттестованного технического персонала. Установленные на баллонных станциях или в других местах, предусмотренных проектом предохранительные клапаны необходимо регулярно подвергать контролю.

В специальном медицинском оборудовании важна каждая деталь, из-за чего к изготовлению специальных вентилей нужно подходить с особой тщательностью. Вентиль магистральный используется в качестве запорного устройства в магистралях газообразного кислорода, азота, сжатого воздуха, закиси азота, углекислого газа и аргона с рабочим давлением до 2 МПа. Вентиль магистральный также может поставляться заказчику как в двух вариантах исполнения с манометром, так и без него. Вентиль медицинский палатный используется как точка потребления рабочей среды при подаче лечебных газов (кислорода, закиси азота, сжатого воздуха, углекислого газа) непосредственно к медицинскому оборудованию. Каждая из составных деталеймедицинского палатного вентиля выполняется строго в соответствии с требованиями нормативных документов.

Во время эксплуатации необходимо регулярно проверять, с учетом специфики каждого лечебного газа, сохранение герметичности всех магистралей, соединений и исправность функциональных элементов. В соответствии, с требованиями безопасности, магистрали обеспечивающие подачу медицинских газов, должны быть снабжены устройствами, позволяющими оперативно перекрывать подачу газа.
Для обеспечения возможности технического обслуживания газовых трубопроводов, их разделяют на отключаемые секции. Исходя из накопленного опыта, можно рекомендовать для обеспечения бесперебойной работы в штатном режиме иметь в резерве на объекте минимальное количество основных функциональных элементов и запасных частей для систем централизованной подачи медицинских газов.

Системы подготовки и подачи сжатого воздуха

Медицинские стационарные компрессорные станции состоят из множества элементов и узлов, различаются по типу привода и принципами сжатия воздуха. Современные станции подачи сжатого воздуха оснащаются ресиверами для сглаживания пульсаций и обеспечения оптимального режима работы компрессора и позволяют в автоматическом режиме обеспечивать снабжение медицинского учреждения в этом виде лечебного газа. Сжатый воздух, подаваемый потребителям не должен содержать микрочастицы, пыль, пары масла и водяной конденсат.

Загрязненный воздух современного мегаполиса является одним из источников преждевременного износа специального медицинского оборудования и наркозно-дыхательной аппаратуры. Огромное количество микрочастицсвободно проходят через входные фильтры компрессоров. Эти частицы, смешанные с водяным паром попадают в компрессор и концентрируются там. После процесса сжатия все загрязнения смешиваются в системе трубопроводов с конденсированной влагой, создавая чрезвычайно агрессивную абразивную эмульсию. В результате этого воздух может стать непригодным для дыхания, происходит ускорение износа медицинского оборудования, рост эксплуатационных расходов и затрат на техническое обслуживание, возникают отказы в работе систем жизнеобеспечения.Для того чтобы этого избежать на компрессорной станции устанавливается комплект из нескольких фильтровдля предварительной и стерилизующей очистки воздуха.Наличие таких узлов и агрегатов в системе подачи сжатого воздуха позволяет получить воздух в соответствие с действующими стандартами и нормами для медицинских учреждений. По желанию заказчика возможна установка дифференциальных манометров для определения степени загрязнения фильтров, создание второй рампы фильтров для возможности резервирования системына время проведенияработ по техническому обслуживанию системы подачи сжатого воздуха.

Вакуумные станции

В этом типе оборудования очень важное внимание уделяется обработке и очистке загрязненного воздуха, приходящего из общей системы. С этой целью такие системы оснащаются высокоэффективными антибактериальными фильтрами и дренажом для сброса, выведенным в безопасное место.

Дополнительные устройства для систем жизнеобеспечения

Ротаметр с увлажнителем является одним из наиболее часто применяемых в медицинской практике устройств, которое предназначено для «плавной» регулировки расхода и увлажнения медицинского кислорода. Ротаметр с увлажнителем подключается непосредственно к газовой магистраличерез палатный медицинский вентиль или клапанную систему. Ротаметр представляет собой устройство для индивидуальной подачи кислорода или кислородно-воздушной смеси, пациентам с сохраненным самостоятельным дыханием с помощью специальной маски или носовой канюли. Конструкция прибора позволяет производить ингаляцию при помощи воды, бронхолитических и антисептических растворов, пеногасителей и других жидких субстанций. Ротаметр без увлажнителя используется для дозированной подачи чистого кислорода к различным устройствам. Ротаметр предоставляет возможностьизмерять объемный расхода потока газа,плавно и с высокой точностью регулировать расход медицинского кислорода. Ротаметр применяется в клинических и амбулаторных условиях для оказания неотложной помощи для длительной кислородной и аэрозольной терапии, проведения различных лечебных и профилактических процедур в лечебных учреждениях и кабинетах. Ротаметры кислорода является важным звеном при использовании кислородно-воздушной смеси.

Кислородная маска является устройством для подачи в дыхательные пути человека кислорода. Кроме этого, кислородная маска может подавать и обогащенные кислородом смеси. Кислородная маска закрепляется на голове и обеспечивает комфортное прилегание к лицу. Далее кислородная маска подсоединяется к источнику кислорода. Современные кислородные маски изготавливаются из эластичных прозрачных материалов. Благодаря этомуобеспечивается мягкий контакт с кожными покровами лица,упрощается контроль над их цветом,облегчается контроль надобщим состоянием пациента. Катетер назальный применяется для прямого введения кислорода через носоглоточный путь. Катетер назальный используют при травмах и ожогах, когда подача через ротовую полость затруднена.

Регулятор вакуума применяется при аспирации в операционных и палатах интенсивной терапии.
В этом случае регулятор вакуума является составной части отсасывающего устройства в системе централизованной подачи вакуума. Основным предназначением регулятора вакуума является контроль и регулировка вакуума, создаваемого в контейнере-сборнике.

С совершенствованием технологий модернизируется и медицинское оборудование, предоставляющеевозможности найти принципиально новые подходы к лечению, открывающие новые возможности для совершенствования лечебного процесса и позволяющие уменьшить восстановительный период послеболезни.

Мы можем предложить нашим клиентам все необходимые устройства и расходные материалы (кислородные маски и трубки кислородные, назальные канюли) для применения в клинических и амбулаторных условиях при длительной кислородной и дыхательной терапии, оказания неотложной помощи, проведения различных лечебных и профилактических процедур.

Дополнительные устройства для систем жизнеобеспечения

Ротаметр с увлажнителем является одним из наиболее часто применяемых в медицинской практике устройств, которое предназначено для «плавной» регулировки расхода и увлажнения медицинского кислорода. Ротаметр с увлажнителем подключается непосредственно к газовой магистрали через палатный медицинский вентиль или клапанную систему. Ротаметр представляет собой устройство для индивидуальной подачи кислорода или кислородно-воздушной смеси, пациентам с сохраненным самостоятельным дыханием с помощью специальной маски или носовой канюли. Конструкция прибора позволяет производить ингаляцию при помощи воды, бронхолитических и антисептических растворов, пеногасителей и других жидких субстанций. Ротаметр без увлажнителя используется для дозированной подачи чистого кислорода к различным устройствам. Ротаметр предоставляет возможностьизмерять объемный расхода потока газа,плавно и с высокой точностью регулировать расход медицинского кислорода. Ротаметр применяется в клинических и амбулаторных условиях для оказания неотложной помощи для длительной кислородной и аэрозольной терапии, проведения различных лечебных и профилактических процедур в лечебных учреждениях и кабинетах. Ротаметры кислорода является важным звеном при использовании кислородно-воздушной смеси.

Кислородная маска является устройством для подачи в дыхательные пути человека кислорода. Кроме этого, кислородная маска может подавать и обогащенные кислородом смеси. Кислородная маска закрепляется на голове и обеспечивает комфортное прилегание к лицу. Далее кислородная маска подсоединяется к источнику кислорода. Современные кислородные маски изготавливаются из эластичных прозрачных материалов. Благодаря этомуобеспечивается мягкий контакт с кожными покровами лица,упрощается контроль над их цветом,облегчается контроль надобщим состоянием пациента. Катетер назальный применяется для прямого введения кислорода через носоглоточный путь. Катетер назальный используют при травмах и ожогах, когда подача через ротовую полость затруднена.

Медицинские и лабораторные газы

Кислород (O2)

Газообразный кислород является продуктом разделения воздуха. Кислород нетоксичен, не горюч, но являясь сильным окислителем, сильно увеличивает способность других материалов к горению. Поэтому для работы в контакте с кислородом могут использоваться только разрешенные для этого материалы. Кислородные баллоны окрашивают снаружи в голубой цвет и наносят надпись черными буквами «Кислород». При обращении с кислородными баллонами необходимо строго соблюдать установленные правила безопасности. Чаще всего рекомендуется располагать кислородные баллоны вне здания, в отдельной пристройке и подавать потребителю по трубопроводу уже редуцированный кислород. Баллоны должны прикрепляться хомутом или цепью к стене, колонне стойке и т. п. для устранения возможности падения. Погрузка и выгрузка баллонов должны производиться осторожно, без толчков и ударов. Баллоны с кислородом необходимо защищать от нагревания, вызывающего опасное повышение давления газа в баллонах. Нельзя допускать загрязнения баллона, в особенности его вентиля, маслами и жирами. Баллоны с кислородом должны храниться на специально отведенных отдельных складах. Жидкий кислород также является мощным окислителем, представляет собой прозрачную жидкость голубого цвета, кипящую при минус 1830C Обращение с кислородом требует строгого соблюдения правил техники безопасности. Масла и жиры самовоспламеняются при взаимодействии с кислородом.

Закись азота (N2O)

Закись азота - бесцветный газ тяжелее воздуха с характерным запахом и слегка сладковатым вкусом. В сжиженном состоянии закись азота обычно находится в баллонах гидравлической емкостью 10 литров. Из 1 кг азота закиси жидкой образуется 500 л газа. Закись азота при сжатии переходит в жидкость, которая затем испаряется, переходя в газ. Этот процесс вызывает охлаждение баллона. Закись азота в чистом виде, как и в смеси с воздухом и кислородом самопроизвольно не взрывается и не воспламеняется, но поддерживает горение. В присутствии масла смесь закиси азота с кислородом при высоком давлении взрывоопасна. В смеси с эфиром, циклопропаном, хлорэтилом закись азота в определенных концентрациях также взрывоопасна. С натронной известью закись азота не вступает ни в какие соединения и не изменяет своей структуры. Поэтому может применяться при работе по реверсивному контуру с использованием химического поглотителя углекислого газа. Закись азота при комнатной температуре и атмосферном давлении является газом, поэтому хранится в сжиженном виде в баллонах под высоким давлением. Баллоны представляют собой 10 литровые бесшовные закрытые емкости из углеродистой стали. Заполненный десятилитровый баллон содержит приблизительно 3 100 литров газа при нормальных условиях. Баллоны окрашивают в серый цвет, снабжают надписью черного цвета "Азота закись".

Углекислый газ (CO2)

Газообразная углекислота - газ без цвета и запаха. Углекислота нетоксична, невзрывоопасна. Предельно допустимая концентрация углекислоты в воздухе рабочей зоны для леченых учреждений не установлена, но при концентрациях более 5 % (92 г/м3) углекислота оказывает вредное влияние на здоровье человека, так как она тяжелее воздуха в полтора раза и может накапливаться в недостаточно проветриваемых помещениях у пола и в приямках. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Для определения и регистрации концентрации углекислоты в воздухе помещений используют стационарные автоматические или переносные газоанализаторы. Жидкую углекислоту высокого давления поставляют в сосудах под давлением - баллонах вместимостью до 40 литров. Баллоны окрашивают в черный цвет с нанесенной желтой надписью «Углекислота».

Аргон (Ar)

Аргон нетоксичен и невзрывоопасен, однако представляет опасность для жизни. В смеси аргона с другими газами или в смеси аргона с кислородом при объемной доле кислорода в смеси менее 19 % развивается кислородная недостаточность, при значительном понижении содержания кислорода - удушье. Газообразный аргон тяжелее воздуха и может накапливаться в недостаточно проветриваемых помещениях у пола и в приямках, а также во внутренних объемах оборудования, предназначенного для получения, хранения и транспортирования газообразного и жидкого аргона. При этом снижается содержание кислорода в воздухе, что приводит к кислородной недостаточности, а при значительном понижении содержания кислорода - к удушью, потере сознания и смерти человека. В местах возможного накопления газообразного аргона необходимо контролировать содержание кислорода в воздухе приборами автоматического или ручного действия с устройством для дистанционного отбора проб воздуха. Объемная доля кислорода в воздухе должна быть не менее 19 %. При работе в атмосфере аргона необходимо пользоваться изолирующим кислородным прибором или шланговым противогазом. Баллоны с аргоном оснащены окрашены в серый цвет. На баллон нанесена зеленая полоса и надпись зеленого цвета «Аргон».

Гелий (He)

Гелий - моноатомный, нетоксичный, химически инертный газ без запаха, цвета и вкуса, имеющий высокий потенциал ионизации. Гелий используется в газообразной форме в криогенной технике, для создания инертной среды при плавке, резке и сварке металлов, в газовой хроматографии, в медицине, в светотехнике и рекламной деятельности, для других научных и производственных целей. Баллоны с гелием окрашены в коричневый цвет. Помещение, где размещаются баллоны с медицинскими и лабораторными газами оборудуется открывающейся наружу дверью. В нем должны быть организованы освещение и воздухообмен (не менее трехкратного в час) с улицей для удаления возможных утечек газов. Полы в помещении должны быть устойчивы к механическим повреждениям, которые могут возникнуть при перемещении баллонов. В помещениях где работает персонал должны быть предусмотрены системы вентиляции, удаления рабочих газов и местных отсосов, в соответствии с нормативными требованиями.

www.polypro.ru

Медгазы газификация больниц медицинскими газами

Газификация больниц

Начав свою деятельность в 2013 году с выполнения работ по устройству газораспределительных и воздухораспределительных систем в учреждениях здравоохранения и на промышленных объектах, компания «ВестМедГрупп» стала активным участником модернизации больниц сразу в нескольких регионах России. На сегодняшний день команда специалистов «ВестМедГрупп» имеет большой опыт в проектировании, монтаже и поставках систем распределения медицинских газов для лечебных заведений, конечных элементов газовых магистралей – палатных настенных консолей, мостов и потолочных комплексов газоснабжения для операционных залов и блоков интенсивной терапии по всему миру.  

Объединив многолетний опыт, собственные уникальные разработки и современные технологии компания «ВестМедГрупп» налаживает в России производство высокотехнологичного медицинского оборудования под собственной торговой маркой CADUCEUS (Кадуцей). Вся продукция отвечает Российским и международным стандартам качества и, что немаловажно, не уступает импортным аналогам по безопасности и техническим характеристикам.

Качественно спроектированная и установленная газораспределительная сеть обеспечивает оптимальные условия работы операционных и реанимационных залов, палат интенсивной терапии через медицинские клапанные системы.

Медицинские системы газоснабжения состоят из периферической части (источник газа, трубы) и центральной (медицинские консоли).

Медицинские консоли – это внутрипалатное оборудование больниц, использующееся для подвода медицинских газов и электропитания к рабочему месту медицинского персонала.

Грамотное использование принципов эргономики позволяет компактно размещать на консолях CADUCEUS газовые терминалы, розетки, системы вызова мед. персонала, полки и прочее необходимое для пациента и медицинского персонала оборудование.

Для преобразования твердых видов топлива в газообразное используется газификатор. Процесс преобразования происходит благодаря взаимодействию кислорода с углеродом топлива в присутствие высокой температуры.

Существует несколько типов газификаторов различного назначения и принципа действия. Газификаторы холодные криогенные, которые предназначены для хранения и газификации жидких продуктов (технических газов в жидком состоянии) и дальнейшей их выдачи в сеть потребителям. Давление в такой сети поддерживается в автоматическом режиме.

На сегодняшний день альтернативой газоснабжению является холодная газификация, без применения дополнительной энергии. Установка криогенных холодных газификаторов производится вне зданий. Конструкция состоит из криогенного резервуара, состоящего из кожуха и внутреннего сосуда (емкости). Кожух имеет эффективную теплоизоляцию. Установка также комплектуется  арматурным шкафом, приборами контроля, атмосферными испарителями для газификации сжиженного газа, трубопроводами и предохранительными устройствами. Примером широкого спектра применения газификаторов служит газификатор кислородный, используемый чисто в медицинских целях. Он может применяться как кислородная подушка и при проведении кислородотерапии.

Для проведения кислородной терапии в амбулаторных условиях специально разработан портативный кислородный газификатор. Его можно использовать и при работе, и во время активного отдыха.

Газораспределительная система — промышленный комплекс по транспортировке газа от магистрального газопровода до отдельных потребителей. Газораспределительная система оборудуется приборами для измерения давления и расхода газа, устройствами связи, сигнализации, запорной арматурой для отключения отдельных участков газораспределительной системы или объектов потребления газа при авариях, ремонтных работах и т.д. Особенность газораспределительной системы — отсутствие в них устройств повышения давления газа (компрессорных станций). Основной элемент газораспределительной системы — газораспределительные сети.

Газораспределительные системы подразделяются на:

  • одноступенчатые;
  • двухступенчатые, состоящие из газораспределительных сетей низкого и среднего или низкого и высокого давления;
  • трёхступенчатые, включающие в себя сети низкого, среднего и высокого давления;
  • многоступенчатые, в которых газ подаётся по сетям низкого, среднего и высокого давления.

Выбор системы газораспределения зависит от вида газа и степени его очистки, источника газа, размеров газифицируемой больницы и особенностей её планировки.

Газораспределительные системы отличаются схемами газораспределительных сетей, способом подключения к источникам медгазов, типом оборудования и сооружений на газораспределительных сетях, системами связи и телемеханики.

Трассы газораспределительных сетей проектируют с учётом обеспечения минимальной протяжённости трубопроводов. Газораспределительные сети выполняют тупиковыми и кольцевыми с дублированием отдельных элементов (для повышения надёжности газоснабжения). Кольцевым газопроводам придают удлинённую форму, вытянутую в направлении основного движения подаваемого газа. Гидравлические режимы работы газораспределительных сетей принимаются из условий обеспечения устойчивой работы газорегуляторных пунктов и установок при максимально допустимых перепадах давления газа.

Для осуществления контроля давления (разряжения) в системе медицинского газоснабжения и экстренного перекрывания подачи медицинских газов в контролируемых участках трубопровода используются контрольно-запорные устройства для медицинских газов CADUCEUS SU. В случае любых изменений показателей давления медицинских газов в контролируемых участках трубопроводов системы медицинского газоснабжения, технический персонал будет оповещен с помощью устройства регистрации давления медицинских газов в системе медицинского газоснабжения CADUCEUS MNS.

Функциональные возможности, техническое совершенство и удобство эксплуатации медицинского оборудования CADUCEUS (Кадуцей), производимого компанией «ВестМедГрупп» на территории Российской Федерации, позволит повысить качество услуг по оказанию медицинской помощи в российских лечебно-профилактических учреждениях.

westmedgroup.ru

Газоснабжение в медицине

17.04.2018

Медицинские газы тесно связаны с лечебными процессами, так как они находят применение во многих областях современной медицины – хирургии, криохирургии, в естественных условиях, анестезиологии, пульмонологии, эндоскопии, диагностике, калибровке медицинского оборудования и многих других. Сфера применения газов очень широка и может быть разделена на две основные группы в зависимости от агрегатного состояния, в котором находится газ, то есть газообразные и жидкие.

В медицине используются следующие газы:

  • кислород газообразный медицинский;
  • кислород жидкий медицинский;
  • циклопропан;
  • ксенон;
  • азота закись.
  • воздух синтетический;
  • воздух сжатый;
  • азот жидкий;
  • азот жидкий ОСЧ;
  • азот газообразный нулевой А;
  • азот газообразный ОСЧ;
  • аргон газообразный ОСЧ;
  • аргон газообразный;
  • аргон газообразный ВЧ;
  • ацетилен растворенный А;
  • гелий газообразный ВЧ 5.5;
  • гелий газообразный ВЧ 6.0;
  • гелий газообразный ВЧ 7.0;
  • гелий газообразный А;
  • гелий газообразный Б;
  • гелий жидкий;
  • двуокись углерода (углекислота) пищевая;
  • двуокись углерода (углекислота) ВЧ;
  • ксенон газообразный ВЧ 5.5;
  • криптон газообразный медицинский.

Лечебные газы и газовые смеси для стимулирования дыхания являются наиболее востребованной и важной группой медицинских газов. Состав искусственных дыхательных медицинских газов может быть адаптирован к конкретным обстоятельствам и требованиям. Так, в медицине используются такие газообразные смеси:

  • смесь кислорода и углекислого газа;
  • смесь гелия и кислорода;
  • эксимерная газовая смесь;
  • смесь с содержанием этиленоксида.

Медицинские газы, содержащие кислород и другие газовые примеси используются при нарушении работы организма. Чистый кислород используют, когда организм подвергается интенсивным нагрузкам или отмечается слабое дыхание в результате воздействия анестетиков или других веществ, которые оказывают угнетающее действие на дыхательный центр.

Медицинские газы нужны не только для диагностических целей и анестезии, они также применяются в клинических исследованиях и научно-исследовательских лабораториях.

Создание системы централизованного газоснабжения

Системы централизованного газоснабжения (СЦГ) в целом основаны на принципах транспортировки больших объемов газа, хранении газа на месте в специальных контейнерах и распределении газа из газохранилищ большой вместимости к конечным потребителям. Газ от производителя может доставляться потребителям в сжиженном виде, в основном за счет использования криогенных систем, или в сжатом газообразном виде, как правило, с применением стальных баллонов или баллонных связок. После установки СЦГ на месте применения и начала ее эксплуатации газ поступает из источника (стационарный или передвижной криогенный резервуар с испарителем - газификатор, баллонная связка с рампой, баллон или специальный контейнер) через манифольд высокого давления с регулятором давления, где входное давление подающей системы редуцируется до уровня, приемлемого для ввода в газораспределительную систему (ГРС). ГРС обычно состоит из трубопроводов, изготовленных из мягкой стали, нержавеющей стали или меди, по которым газ поступает к потребителю. На конце трубопроводы оснащены выпускной арматурой, которая отвечает за доведение газа до установленных параметров, например, давления и расхода, в соответствии с требованиями потребителей.


Система централизованного газоснабжения в ЛПУ

Спектр работ по созданию системы централизованного газоснабжения (СЦГ) можно поделить на несколько стадий:

  1. Создание проекта сети газоснабжения;
  2. Комплектация проекта;
  3. Сборка системы медицинского газоснабжения;
  4. Запуск и настройка;
  5. Техническое сопровождение систем медицинского газоснабжения.

Нормативная база, применяемая при проектировании систем медицинского газоснабжения:

- СНиП 31-06-2009 "Общественные здания и сооружения";

- Технический регламент о безопасности машин и оборудования;

- Технический регламент о безопасности зданий и сооружений;

- СНиП 3.05.05-84 "Технологическое оборудование и технологические трубопроводы";

- ПБ 03-576-03"Правила устройства и безопасной эксплуатации сосудов, работающих под давлением";

- ПБ 11-544-03 "Правила безопасности при производстве потреблении продуктов разделения воздуха";

- ПБ 03-585-03 "Правила устройства и безопасной эксплуатации технологических трубопроводов";

- ПБ 03-581-03 "Правила устройства и безопасной эксплуатации стационарных компрессорных установок, воздухопроводов и газопроводов" и другие нормативные документы (ГОСТы Р, ОСТы, ОМУ, СНИПы, ПБ, ВСН).

Система газопроводов проектируется так, чтобы медицинские сотрудники и пациенты не имели прямого контакта с основным источником газоснабжения. Баллоны и прочие емкости с газом хранятся в специально оборудованных помещениях как в здании, так и вне здания.

Системы подачи медицинских газов требуют усиленного внимания к безопасности. В целях предотвращения опасности на газопровод устанавливаются модули контрольно-отключающей арматуры, чтобы, в случае возникновения опасности взрыва, оперативно отключить здание от газоснабжения.

Системы медицинского газоснабжения эксклюзивны. Каждое медицинское подразделение устанавливает отличную от других систему. Однако разработаны общие варианты размещения элементов системы медицинского газоснабжения, удовлетворяющие требования разных медицинских профилей.

Первоисточником любой системы являются сами источники медицинского газоснабжения, специализированная арматура и газопроводы, распределенные по всему объекту и образующие внутреннюю сеть медицинских газов.

Источники медицинского газоснабжения

Рампа с блоком контроля для автономного снабжения медицинскими газами от баллонов кислорода, закиси азота и углекислого газа. Количество баллонов определяется количеством мест подачи и потребностью в медицинских газах. Газ от баллонов поступает к рампе через медный змеевик или металлорукав, затем проходя через редукционный щит (манифольд) по системе газопроводов доходит до потребителей.

Управление переключением источника ведется с помощью электронных или механических устройств. При падении давления в одной из групп баллонов до заданного уровня происходит автоматическое переключение на вторую группу баллонов. Пустая первая группа баллонов при этом отключается.

Классификация рамп: наполнительные, перепускные, разрядные. Медицинские рампы укомплектованы манометрами и газовой арматурой. Они размещаются под навесом или в специальном шкафу у стен вне здания, либо в цокольном помещении.

Баллоны, предназначенные для транспортировки, хранения и использования сжатых азота, кислорода, углекислоты должны соответствовать ГОСТ 949-73.


Медицинская рампа для CO2

Компрессорные станции обеспечивают подачу сжатого воздуха высокого качества, полностью очищенного и отфильтрованного от бактериальных и атмосферных загрязнений. В учреждениях медицинского профиля чаще всего используется сжатый воздух низкого (5 бар) и высокого (8 бар) давления со степенью очистки, соответствующей ГОСТ 52539-2006.

Компрессорные станции обеспечивают круглосуточную бесперебойную работу медицинского оборудования, подключаемого к сети сжатого воздуха. В зависимости от предполагаемого расхода, подбирается компрессор соответствующей производительности.

Как правило в медицинских учреждения устанавливаются компрессоры следующих видов:

  • поршневые компрессоры;
  • винтовые компрессоры.

В основе работы поршневого компрессора лежит принцип сжатия воздуха при движении поршней, при использовании винтового компрессора нагнетание воздуха осуществляется с помощью винта. Винтовые компрессоры являются более технологичными, по сравнению с поршневыми, и чаще используются для подготовки медицинского сжатого воздуха.

Для сглаживания струи подготавливаемого воздуха используется ресивер, объём которого подбирается в зависимости от производительности компрессора и заданного выходного давления. Для повышения надёжности компрессорной станции в её состав входят два или более мотора, которые размещаются на ресивере.

Также, в состав компрессорной станции входят осушитель и фильтры с разными степенями очистки, что обеспечивает необходимую степень чистоты воздуха. Данная линия, в целях повышения надёжности, дублируется. Компрессорная станция комплектуется блоком управления, который обеспечивает контроль показателей работы станции и осуществляет переключение моторов компрессора.


Компрессорная станция

Концентратор кислорода - это прибор, который генерирует кислород из воздуха. Он пропускает атмосферный воздух через специальный фильтр, в котором молекулы азота связываются, а молекулы кислорода свободно проходят дальше на выход аппарата. В результате получается воздушная смесь, содержащая до 90-95% кислорода. Прибор находит применение для лечения тяжелой степени бронхообструктивного синдрома и купирования явлений дыхательной недостаточности. Может эксплуатироваться в стационаре, службах скорой и неотложной медицинской помощи, в спасательных службах, респираторно-восстановительном центре, в кислородных барах, а так же непосредственно на дому пациентом.

Кислородные концентраторы имеют преимущество над баллонами сжатого кислорода, так как в случаях утечки они не способствуют более быстрому распространению огня.


Концентратор кислорода


Криогенные холодные газификаторы, как источники медицинских газов, устанавливают за пределами здания. Они состоят из криогенного резервуара, собранного из внутреннего сосуда и кожуха, между которыми находится экранно-вакуумная теплоизоляция, атмосферных испарителей для газификации сжиженного газа, запорной, регулирующей и предохранительной арматуры, приборов контроля.


Газификатор холодный криогенный (ГХК-1,5/1,6-50) на базе 3 сосудов по 500л


Газификатор холодный криогенный (ГХК-1/1,6-50) на базе 2 сосудов по 500л

Принцип действия газификатора основан на создании рабочего давления в резервуарах, заполненных сжиженным газом. Подъем и поддержание давления в резервуарах обеспечивается испарителем подъема давления. Из резервуара жидкий продукт подается в продукционный испаритель, откуда газ под давлением до 16 атм поступает потребителю по системе газопроводов. При потреблении газа, давление поддерживается автоматически регулятором давления и контролируется по показаниям манометра. Контроль количества заливаемого жидкого продукта осуществляется уровнемером (УЖК - указатель жидкого кислорода).

В зависимости от геометрического объема, газификатор способен заместить от 22 (DPL450-175-2,3) до нескольких сотен стандартных 40-ка литровых баллонов. При эксплуатации газификатора нет необходимости в перевозке, разгрузке и погрузке громоздких и опасных баллонов. Достигается значительная экономия при транспортных затратах. Отсутствуют операции подключения и отключения баллонов в газовой рампе. На данный момент все больше ЛПУ переходят на снабжение газом через газификаторы, при этом газовая система проектируется таким образом, что бы в ней присутсвовали 2 источника газа (основной и резервный). Это связано с тем, что при заправке одного из сосудов, подача кислорода не должна прерываться.

Арматура для медицинского газоснабжения

Качественно изготовленная и грамотно установленная арматура для медицинского газоснабжения позволит не только упростить эксплуатацию системы медицинского газоснабжения, но и повысить качество контроля над ее бесперебойной работой. Одна из основных задач данного оборудования заключается в предотвращении аварийных ситуаций, при малейших подозрениях на которые провести отключение от газоснабжения можно будет намного быстрее и легче.

Производство высококачественной арматуры для медицинского газоснабжения предусматривает применение современных технологий и использование надежных материалов, благодаря которым улучшаются эксплуатационные свойства всех элементов системы. Комплектацию арматурой проводят с учетом требований заказчиков и особенностей месторасположения, в котором она будет установлена. В основном в медицине применяется газовая арматура с рабочим давлением до 1,6 МПа (кг/см2).

Широкую линейку газовой арматуры для использования в медицине предлагает чешский производитель GCE. Компания поставляет комплектные системы подачи кислорода, закиси азота, вакуума и других газовых сред для больниц, машин скорой помощи, аварийных, и для других специальных служб, использующих данное оборудование.


Регулятор давления GCE серии medline


Медицинская рампа на основе рампового вентильного блока manyflow

Газопровод

Кислородопроводы производят из красномедных или латунных труб (ГОСТ 617-90 и 21646-76). В случае прокладки кислородопровода высокого давления в грунте использование труб из стали и без швов не рекомендуется. Монтаж осуществляется при помощи сварки.


Кислородопровод

Виды кислородопроводов:

  • внутристанционные;
  • подземные;
  • надземные.

Монтаж кислородопроводов невозможен без обезжиривания кислородопровода. Арматура перед монтажом подвергается полной разборке, обезжиривается и просушивается. Обезжиривание кислородопровода осуществляется с помощью четыреххлористого углерода чистого, либо трихлорэтилена и водных моющих растворов. После того, как монтаж завершен, проводится гидравлическое испытание на прочность и пневматическое испытание на плотность при рабочем давлении.

Монтаж подземного кислородопровода, транспортирующего кислород, не содержащий влаги, можно осуществлять выше уровня промерзания, но не менее 0,8 метра от трубы до поверхности земли. Также возможна прокладка подземного кислородопровода, содержащего влагу, ниже уровня промерзания. Его располагают в траншее, изолируют для предотвращения наружной коррозии, и только после этого засыпают землей.

Запрещена прокладка с силовыми, осветительными и телефонными кабелями. Допускается пересечение каналов с кислородопроводными кабелями в защитных футлярах или трубах, выходящих за наружные стенки канала не менее чем на 250 мм. Укладка надземных кислородопроводов должна проводиться на огнезащитных, несгораемых эстакадах или стойках, по наружным стенам зданий – на несгораемых кронштейнах.

predklapan.ru


Смотрите также